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Abstract. The influence of the HTB effect on the multiplicity distribution and charge ratios of indepen-
dently produced pions is studied. It is shown that, for a wide class of models, there is a critical point, where
the average number of pions becomes very large and the multiplicity distribution becomes very broad. In
this regime unusual charge ratios (“centauros”, “anticentauros”) are strongly enhanced. The prospects for
reaching this regime are discussed.

1 Introduction

It is now well established that the HBT correlations [1]
influence significantly the momentum distribution of par-
ticles created in high-energy collisions. The effect on mul-
tiplicity distributions and on particle ratios, however, al-
though predicted theoretically [2–5], has not yet been
found in accelerator experiments [6]. In view of the in-
creasing interest in measurements of multiplicity distribu-
tions in future collider experiments, we found it worth-
while to reexamine this problem once more.

We begin by reviewing the basic ideas of the HBT
effect, as applied to processes of particle production. This
will permit to explain our assumptions and to introduce
the notation.1

Let ψ0(q1, q2, . . . , qn, α) ≡ ψ0(q, α) be the probability
amplitude for the production of n particles with momenta
[q1, q2, . . . , qn] ≡ q calculated ignoring the identity of par-
ticles. Here α denotes a collection of all other quantum
numbers which may be relevant to the process in question
(e.g., the momenta of other particles which we do not wish
to consider explicity in a “semi-inclusive” measurement).
The density matrix

ρ0(q, q′) =
∫
dαψ0(q, α)ψ∗

0(q′, α) (1)

gives all the availabe information about the system in
question. In particular, the momentum spectrum of par-
ticles is

Ω0(q) =
∫
dα|ψ0(q, α)|2 = ρ0(q, q) . (2)

a Also at the Nuclear Physics Institute, Krakow, Poland
1 We will follow the approach of [7]

In the following we shall assume that Ω0(q) is normalized
to 1: ∫

dqΩ0(q) = 1 . (3)

Suppose now that the particles are identical. In this case
the states with different permutation of particle momenta
are non-distinguishable and the wave function is a sum
over all permutations

ψ(q, α) =
∑
P

ψ0(qP , α) , (4)

where qP is the set of momenta [q1, q2, . . . , qn] ordered
according to the permutation P of [1, 2, . . . , n]. Using (1)–
(4) we obtain for the distribution of momenta of identical
particles

Ω(q) =
1
n!

∫
dα|ψ(q, α)|2 =

1
n!

∑
P,P ′

ρ0(qP , qP ′) . (5)

The factor 1
n! takes care of the fact that the phase-space

for n identical particles is n! times smaller than the phase-
space of the non-identical ones.

Equation (5) summarizes the effect of the identity of
particles on the observed spectra. It is seen that to eval-
uate this effect it is not enough to know the spectrum
Ω0(q). The full density matrix ρ0(q, q′) is necessary. In-
verting this statement we observe that the measurements
of the spectra of identical particles provide information on
the density matrix ρ0(q, q′), inaccessible otherwise. This is,
in fact, the reason why these measurements are so attrac-
tive.

There are three points worth observing in (5):
(i) When momenta of all particles are equal, we obtain

the simple result

Ω(q1 = q2 = . . . = qn) = n!Ω0(q1 = q2 = . . . = qn) . (6)
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(ii) The normalization of Ω(q) is different from that of
Ω0(q). Generally we have∫

dqΩ(q) ≥
∫
dqΩ0(q) (7)

Since the relation between Ω(q) and Ω0(q) depends on
n, the HBT effect affects not only the shape of momen-
tum spectrum but also the multiplicity distribution. This
aspect of the problem is the subject of the present inves-
tigation.

(iii) If particles are emitted in a pure state, i.e., if
ρ0(q, q′) = ψ0(q)ψ∗

0(q′) and if ψ0(q) is symmetric with
respect to interchange of any pair of momenta, we have

Ω(q) = n!Ω0(q) (8)

a really dramatic result2

2 HBT phenomenon in uncorrelated emission

Consider now a system of n particles emitted indepen-
dently. If we ignore the identity of particles, independent
emission implies that the density matrix factorizes

ρ0(q, q′) =
n∏

i=1

ρ0(qi, q′
i) . (9)

Introducing this into (5) we have

Ω(q) =
1
n!

∑
P,P ′

n∏
i=1

ρ0((qP )i, (qP ′)i) . (10)

Here we are interested in the integral

Wn =
∫
dqΩ(q) =

∑
P

∫ n∏
i=1

(d3qiρ0(qi, (qP )i)) . (11)

To calculate Wn we observe that, for each permutation
P the integral on the right hand side of (11) factorizes
into a product of contributions from all the cycles of P
(as is well-known, each permutation can be decomposed
into cycles). Let us denote the contribution from a cycle
of length k by Ck. We have

Ck =
∫
d3q1 . . . d

3qkρ0(q1, q2)ρ0(q2, q3) . . .

. . . ρ0(qk−1, qk)ρ0(qk, q1) (12)

It follows from (3) that C1 = 1. For k > 1, Ck depends
on the form of ρ0(q, q′) and cannot be calculated without

2 We emphasize again that Ω0(q) is the spectrum calculated
with identity of particles being ignored. Some authors [8], while
discussing the HBT effect for pure states, include the identity
of particles already in calculation of Ω0(q). In this case one
obtains of course Ω(q) = Ω0(q)

further assumptions. One can prove, however, that all Ck

are positive. Indeed, one sees from (12) that

Ck = Tr[ρ0]k . (13)

Since ρ0(q, q′), being a density matrix, has only non-nega-
tive eigenvalues and trace one, Ck > 0.

The rest of the calculation if just combinatorics.
We observe first that any two permutations which have

identical partitions into cycles give equal contributions.
Denoting by nk the number of occurrences of a cycle of
length k in the set of permutations considered, the contri-
bution from all of them can be written as

W ′
n =

n∏
k=1

(Ck)nk
n!

(k!)nk
[(k − 1)!]nk

1
nk!

= n!
n∏

k=1

(
Ck

k

)nk

nk!
. (14)

In the first equality the first factor is the integral, the
second is the number of partitions of the n particles among
the cycles, the third is the number of ways a cycle can be
constructed from k particles and the last one corrects for
the permutations of whole cycles.

Wn is obtained by summing W ′
n only over permuta-

tions which have partitions into cycles different from each
other. This still leaves a large number of terms but – for
large n – this number is much smaller than the original
n!.

Until now we have considered a fixed multiplicity. If
the multiplicity distribution calculated with identity of
particles ignored is given by P0(n), the correct multiplicity
distribution of identical particles is

P (n) =
P0(n)Wn∑
m P0(m)Wm

(15)

For independent emission P0(n) is given by the Poisson
distribution

P0(n) = e−ν ν
n

n!
(16)

and we obtain an elegant formula for the generating func-
tion of the multiplicity distribution:

Φ(z) ≡
∑

n

P (n)zn = exp

( ∞∑
k=1

νk(zk − 1)Ck

k

)
. (17)

3 General discussion
of multiplicity distributions obtained
from independent emission

In this section we discuss the general properties of the
multiplicity distributions obtained from (17).

First, we observe that using well-known properties of
the generating function we obtain from (17) for the aver-
age multiplicity

〈n〉 =
∞∑

k=1

νkCk , (18)
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and for the correlation coefficients (cumulants)

Kp =
∞∑

k=p

(k − 1)!
(k − p)!

Ckν
k . (19)

All the cumulants are positive, because all the Ck are.
This means in particular that the distribution is always
broader than the Poisson one.

Specific properties of the distributions defined by (17)
depend, of course, on the value of ν and of the cycle inte-
grals Ck.

The first important example we would like to consider
is when particles are emitted in a pure state, i.e.

ρ0(q, q′) = ψ(q)ψ∗(q′) . (20)

It follows from (12) that Ck = 1 for all k and the gener-
ating function becomes

Φ(z) = exp

( ∞∑
k=1

νk(zk − 1)
k

)
=

1 − ν

1 − νz
(21)

corresponding to the geometric distribution

P (n) = (1 − ν)νn , 〈n〉 =
ν

1 − ν
(22)

which, at the critical point ν → 1, exhibits the phenome-
non of Einstein condensation. One sees from this example
that the resulting multiplicity distribution has little to do
with the original Poisson one, and the observed average
multiplicity may dramatically differ from the initial ν. As
we shall see, this is a general phenomenon.

Further discussion depends on the assumed shape of
the single-particle density matrix.

The evaluation of Ck is greatly simplified if one works
in the basis where the density matrix ρ0(q, q′) is diagonal.

Let us first discuss the case of a discrete eigenvalue
spectrum. We have

Ck =
∑
m

λk
m , C1 =

∑
m

λm = 1 (23)

and thus the generating function of the multiplicity dis-
tribution can be represented as a product

Φ(z) =
∏
m

Φm(z) (24)

where
Φm(z) =

1 − λmν

1 − zλmν
(25)

are the generating functions of the geometric distribution
(if the eigenvalue λm is degenerate, the corresponding fac-
tor in (24) appears gm times, where gm is the degeneration
factor).

Thus we obtain the average multiplicity

〈n〉 =
∑
m

λmν

1 − λmν
≥ λ0ν

1 − λ0ν
(26)

and the cumulants

Kp = (p− 1)!
∑
m

(
λmν

1 − λmν

)p

≥ (p− 1)!
(

λ0ν

1 − λ0ν

)p

(27)

where λ0 is the largest eigenvalue of ρ0(q, q′). One sees that
νλ0 = 1 is the critical point of the multiplicity distribution
(cf. [2]).

Let us now discuss the case when the eigenvalue spec-
trum is continuous. Denoting by λ the eigenvalues of
ρ0(q, q′) and by σ(λ) the spectral functions we have

Ck =
∫ 1

0
σ(λ)λkdλ . (28)

The normalization condition (3) implies that

C1 =
∫ 1

0
σ(λ)λdλ = 1 . (29)

One sees that the problem reduces to a discussion of
a single non-negative function σ(λ) defined in the interval
[0, 1] and satisfying the condition (29). We also note that
the eigenvalues equal to zero do not contribute to Ck.
One can thus always add to σ(λ) a term of the form aδ(λ)
(with an arbitrary positive constant a) without changing
the results.

To be more specific, we consider the generic spectral
function in the form

σ(λ) = λ−2
0

Γ (a+ b+ 3)
Γ (a+ 2)Γ (b+ 1)

(
λ

λ0

)a(
1 − λ

λ0

)b

(30)

for 0 ≤ λ ≤ λ0 and zero otherwise.
We obtain

Ck = λk−1
0

Γ (a+ b+ 3)Γ (a+ k + 1)
Γ (a+ 2)Γ (a+ b+ k + 2)

(31)

and the cumulants

Kp =
Γ (a+ b+ 3)Γ (a+ p+ 1)Γ (p)
Γ (a+ b+ p+ 2)Γ (a+ 2)

νpλp−1
0

F (p, a+ p+ 1; a+ b+ p+ 2;λ0ν) . (32)

The hypergeometric function F becomes singular at νλ0 =
1 when p exceeds b+ 1.

Three special cases are of interest:
(i) b → −1. In this case σ(λ) → 1

λ0
δ(λ − λ0) and we

have Ck = λk−1
0 . Thus

Φ(z) =
(

1 − λ0ν

1 − λ0νz

) 1
λ0

(33)

and we recognize the negative binomial distribution with
the average 〈n〉 = ν

1−λ0ν . For λ0 → 0 we recover the Pois-
son distribution (16). As discussed in the previous section,
λ0 → 1 corresponds to the pure state Ck = 1.
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(ii) a = b = 0. Now we have Ck = 2
k+1λ

k−1
0 and one

finds the following formula for the cumulants of the dis-
tribution

Kp = 2
(p− 1)!
p+ 1

νp

(
λ0

1 − λ0ν

)p−1

F (1, 2; p+2;λ0ν) . (34)

From the known properties of the hypergeometric func-
tion [9] we deduce that at the critical point λ0ν → 1,
〈n〉 diverges logarithmically, whereas all other cumulants
diverge as negative powers of (1 − λ0ν).

(iii) b > 0. In this case the average multiplicity ap-
proaches a finite limit at the critical point λ0ν → 1. The
divergences appear in cumulants of order p > b+ 1.

To summarize, the distribution becomes always singu-
lar when νλ0 (i.e. the product of the initial average multi-
plicity and the maximal eigenvaule of the density matrix)
approaches 1. The character of the singularity at this crit-
ical point, however, depends crucially on the behaviour of
the spectral function in the vicinity of λ0.

4 Gaussian density matrix

In this section we consider the single particle density ma-
trix of the Gaussian form, discussed already in several
papers by Pratt [2–4] (see also [5])

ρ0(q, q′) = ρx(qx, q′
x)ρy(qy, q′

y)ρz(qz, q′
z) (35)

with

ρx(qx, q′
x) =

(
1

2π∆2
x

)1
2

e
− (q

+
x )2

2∆2
x

− 1
2 R2

x(q−
x )2

, (36)

where
q+ ≡ 1

2
(q + q′) ; q− ≡ q − q′ . (37)

Analogous formulae define ρy and ρz. As easily seen, ∆2
x

is the average value of the square of the x-component of
the particle momentum, and R2

x is the average value of the
square of the x-coordinate of the particle emission point.
The uncertainty principle implies that for i = x, y, z,

Ri∆i ≥ 1
2

(38)

In order to determine the multiplicity distribution, we
first find the eigenvalues of the density matrix (36). To
this end we observe that the eigenfunctions of (36) are of
the form3

fm(q) = e− 1
2

R
∆ q2

Hm

(√
R

∆
q

)
, (39)

where Hm(q) is the Hermite polynomial of order m. Using
(39) it is not difficult to find the eigenvalues:

λm = λ0(1 − λ0)m , m = 0, 1, . . . , (40)

3 This was pointed out to us by A. Staruszkiewicz

where

λ0 =
2

(1 + 2∆xRx)
2

(1 + 2∆yRy)
2

(1 + 2∆zRz)
(41)

is the greatest of the eigenvalues. Note that (38) implies
that λ0 ≤ 1, as necessary.

The generating function is given by (24), (25) and the
cumulants by (27) with λm given by (40).

Using (40) and following the arguments of the previous
section we also obtain the elegant formula

Ck =
∑
m

λk
m =

λk
0

1 − (1 − λ0)k
. (42)

Together with (19), this gives for the cumulants

Kp =
∞∑

k=p

(k − 1)!
(k − p)!

(νλ0)k

1 − (1 − λ0)k
, (43)

which diverges, as expected, at νλ0 → 1.

5 Charge ratios

It was first pointed out by Pratt [2–4] that studies of the
charge ratios may be an effective way to uncover the effects
of HBT correlations in multiparticle systems. This issue
can be readily treated using the methods developed in
Sects. 3 and 4.

We would like to discuss independent production of
positive, negative and neutral pions. The main difficulty
in formulating the problem is how to implement the con-
straint of charge conservation, as this clearly depends on
the dynamics of the production process (a thorough dis-
cussion can be found in [4]). Here we restrict ourselves
to two cases which, we believe, illustrate well the main
point: the charge ratios obtained may drastically differ
from those expected from the “uncorrected” distributions.

In the first case the constraint of charge conservation is
ignored altogether. This may be justified if the system of
particles we consider is a small part of a very large system.
For the generating function of multiplicity distribution we
thus obtain simply

Φ(z+, z−, z0) = Φ(z+)Φ(z−)Φ(z0) , (44)

where Φ(z) is the generating function of the multiplicity
distribution of one of the species. Introducing nc = n+ +
n− we have

Φ(zc, z0) = Φ2(zc)Φ(z0) . (45)

From this equation one can obtain the full joint distribu-
tion of charged and neutral pions by the usual methods.
For illustration we just quote the results for two extreme
cases n0 = 0 (“centauros”) and nc = 0 (“anticentauros”):

P (n0 = 0) = Φ(0) , P (nc = 0) = [Φ(0)]2 . (46)

Using now the results of the previous section we have

P (n0 = 0) =
∏
m

(1 − λmν) ,

P (nc = 0) = [P (n0 = 0)]2 .
(47)
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One immediate consequence is that the production of
“centauros” must be larger than that of “anticentauros”.
For the Gaussian density matrix we obtain, according to
(40),

P (n0 = 0) =
∏
m

(1 − λ0ν(1 − λ0)m) . (48)

The second case we consider is when the charged par-
ticles are produced in pairs, i.e., the distribution is of the
form

P (nc, n0) =
[P (nc/2)]2P (n0)∑

m[P (m)]2
. (49)

Thus for production of “centauros” we obtain the same
formula as before. The generating function reads

Φ(zc, z0) = Ψ(zc)Φ(z0) (50)

where

Ψ(zc) =

∑
nc

[P (nc/2)]2znc
c∑

m[P (m)]2
. (51)

The probability of creating an “anticentauro” is

Ψ(zc = 0) =
[Φ(0)]2∑
m[P (m)]2

> [Φ(0)]2 (52)

and thus the production of “anticentauros” is enhanced as
compared to the previous case.

These results are illustrated in Fig. 1, where the proba-
bility of the occurrence of a “centauro”, P (n0 = 0) = Φ(0),
given by (48), is plotted versus the average multiplicity of
the system considered for different values of the paramter
R∆, which determines the maximal eigenvalue λ0 through
the relation (41). One sees that for R∆ ≤ 1 this probabil-
ity remains substantial even for rather large values of the
total multiplicity. With increasing R∆, however, it drops
pretty fast even at moderate values of the average multi-
plicity.

6 Discussion and outlook

One sees from the results of the previous sections that
the effects of quantum interference can modify substan-
tially the multiplicity distribution expected naively from
an uncorrelated emission of “distinguishable” particles.
The modifications become spectacular when the system
of particles approaches the critical point: the multiplicity
distribution becomes very broad and does not resemble in
any way the original Poisson distribution characteristic of
uncorrelated emission. This means in particular that one
expects relatively large probabilities for unusual configu-
rations such as “centauro” or “anticentauro” events.

It is thus interesting to discuss the physical conditions
for these phenomena to occur. Considering the example
of the Gaussian density matrix, it is seen from Fig. 1 that
the behaviour of the system is mainly determined by the
parameterR∆ and that spectacular effects in charge ratios
occur when R∆ is of order 1 or smaller (as already noted,
c.f. (38), R∆ ≥ 1

2 ). The condition

R∆ ∼ 1 (53)

Fig. 1. Frequency of “centauro” events as function of the av-
erage total multiplicity for various values of the parameter R∆

implies, for large multiplicity, either a very large parti-
cle and energy density (when R is small and ∆ takes its
“canonical” value of ∼ 1 fm−1), or a “canonical” energy
density of about 1 GeV/fm3 and a very small average mo-
mentum of the particles in the c.m. of the system. To
be more specific, a system of 100 pions satisfying (53) at
∆ = 200 MeV would correspond to the energy density of
about 35 GeV/4 fm3 ≈ 10 GeV/fm3. On the other hand,
for an energy density of about 1 GeV/fm3 (and thus R
correspondingly larger), ∆ should not exceed 100 MeV.

Clearly, the probability of creating a “centauro” is en-
hanced if both effects cooperate. We thus conclude that
(a) the probability of creating a “centauro” is enhanced
in an environment of high energy density and that the
pions emerging from the “centauros” ar likely to exhibit
abnormally small relative momenta.

Finally, let us stress the crucial role played in this
analysis by the “original” Poisson multiplicity distribution
P0(n) and by the reference density matrix ρ0(q, q′) for the
distinguishable particles. This distribution is easily iden-
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tified when working with Feynman diagrams4, but it is
undefined experimentally. In order to extract the HBT
effect from experiment, one would like to compare the
data with a reference distribution where the HBT effect
has been switched off. The problem, how to define op-
erationally this reference distribution has been discussed
for many years without a generally accepted conclusion
[10,11], for a review c.f. [8]. Consequently, it is not pos-
sible to check separately the assumptions about ρ0(q, q′),
P0(n) and the analysis of the HBT effect. In the present
paper we have chosen simple, but rather general, assump-
tions about ρ0, P0 and concentrated on the HBT effect. No
doubt, however, more work remains to be done in order to
find a realistic “distribution of distinguishable particles”
ρ0(q, q′), P0(n).
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4 We thank J. Pisut for a discussion about this point
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